Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.

Identifieur interne : 002465 ( Main/Exploration ); précédent : 002464; suivant : 002466

The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.

Auteurs : Hechen Zhang [République populaire de Chine] ; Fuling Lv ; Xiao Han ; Xinli Xia ; Weilun Yin

Source :

RBID : pubmed:23423605

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

This paper is the first to directly link two types of ion channel regulation pathway into an emerging and complex CBL-CIPK signal system in wooden plant. In Arabidopsis thaliana, the calcineurin b-like (CBL) 1 gene has been shown to be necessary in response to abiotic stresses. In this study, we identified CBL1 in the woody plant Populus euphratica, designated as PeCBL1. Heterologous expression of PeCBL1 could build the resistance of sensitive phenotypes to low K(+) stress in the corresponding Arabidopsis cbl1/cbl9 mutant, and display a salt-sensitive phenotype compared with the mutant. Protein interaction analysis showed that PeCBL1 can interact with PeCIPK24, 25 and 26, and form different complexes of PeCBL-PeCIPK. To further investigate the mechanism of PeCBL1, we analyzed the fluxes of K(+) and Na(+) in roots of the wild-type Arabidopsis, cbl1/9 mutant, and PeCBL1 transgenic plants under low K(+) stress and high Na(+) stress. These analyses revealed that, compared to the cbl1/9 mutant, the PeCBL1 transgenic plant roots exhibited a higher capacity to absorb K(+) after exposure to low K(+) stress, and a lower capacity to discharge Na(+) after exposure to salt stress. The results suggest that CBL1 interacts with CIPK24, CIPK25 and CIPK26 to regulate Na(+)/K(+) homeostasis in Populus euphratica.


DOI: 10.1007/s00299-013-1394-5
PubMed: 23423605


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.</title>
<author>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory of Forest Genetics and Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory of Forest Genetics and Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23423605</idno>
<idno type="pmid">23423605</idno>
<idno type="doi">10.1007/s00299-013-1394-5</idno>
<idno type="wicri:Area/Main/Corpus">002694</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002694</idno>
<idno type="wicri:Area/Main/Curation">002694</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002694</idno>
<idno type="wicri:Area/Main/Exploration">002694</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.</title>
<author>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory of Forest Genetics and Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory of Forest Genetics and Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Calcium Signaling (physiology)</term>
<term>Calcium-Binding Proteins (genetics)</term>
<term>Calcium-Binding Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Potassium (metabolism)</term>
<term>Protein Interaction Maps (MeSH)</term>
<term>Salt Tolerance (genetics)</term>
<term>Sodium (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cartes d'interactions protéiques (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Potassium (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines de liaison au calcium (génétique)</term>
<term>Protéines de liaison au calcium (métabolisme)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Signalisation calcique (physiologie)</term>
<term>Sodium (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tolérance au sel (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Calcium-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison au calcium</term>
<term>Tolérance au sel</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Calcium-Binding Proteins</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Potassium</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Potassium</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison au calcium</term>
<term>Racines de plante</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Signalisation calcique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Calcium Signaling</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Homeostasis</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Plants, Genetically Modified</term>
<term>Protein Interaction Maps</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartes d'interactions protéiques</term>
<term>Données de séquences moléculaires</term>
<term>Homéostasie</term>
<term>Mutation</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>This paper is the first to directly link two types of ion channel regulation pathway into an emerging and complex CBL-CIPK signal system in wooden plant. In Arabidopsis thaliana, the calcineurin b-like (CBL) 1 gene has been shown to be necessary in response to abiotic stresses. In this study, we identified CBL1 in the woody plant Populus euphratica, designated as PeCBL1. Heterologous expression of PeCBL1 could build the resistance of sensitive phenotypes to low K(+) stress in the corresponding Arabidopsis cbl1/cbl9 mutant, and display a salt-sensitive phenotype compared with the mutant. Protein interaction analysis showed that PeCBL1 can interact with PeCIPK24, 25 and 26, and form different complexes of PeCBL-PeCIPK. To further investigate the mechanism of PeCBL1, we analyzed the fluxes of K(+) and Na(+) in roots of the wild-type Arabidopsis, cbl1/9 mutant, and PeCBL1 transgenic plants under low K(+) stress and high Na(+) stress. These analyses revealed that, compared to the cbl1/9 mutant, the PeCBL1 transgenic plant roots exhibited a higher capacity to absorb K(+) after exposure to low K(+) stress, and a lower capacity to discharge Na(+) after exposure to salt stress. The results suggest that CBL1 interacts with CIPK24, CIPK25 and CIPK26 to regulate Na(+)/K(+) homeostasis in Populus euphratica.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23423605</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.</ArticleTitle>
<Pagination>
<MedlinePgn>611-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-013-1394-5</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">This paper is the first to directly link two types of ion channel regulation pathway into an emerging and complex CBL-CIPK signal system in wooden plant. In Arabidopsis thaliana, the calcineurin b-like (CBL) 1 gene has been shown to be necessary in response to abiotic stresses. In this study, we identified CBL1 in the woody plant Populus euphratica, designated as PeCBL1. Heterologous expression of PeCBL1 could build the resistance of sensitive phenotypes to low K(+) stress in the corresponding Arabidopsis cbl1/cbl9 mutant, and display a salt-sensitive phenotype compared with the mutant. Protein interaction analysis showed that PeCBL1 can interact with PeCIPK24, 25 and 26, and form different complexes of PeCBL-PeCIPK. To further investigate the mechanism of PeCBL1, we analyzed the fluxes of K(+) and Na(+) in roots of the wild-type Arabidopsis, cbl1/9 mutant, and PeCBL1 transgenic plants under low K(+) stress and high Na(+) stress. These analyses revealed that, compared to the cbl1/9 mutant, the PeCBL1 transgenic plant roots exhibited a higher capacity to absorb K(+) after exposure to low K(+) stress, and a lower capacity to discharge Na(+) after exposure to salt stress. The results suggest that CBL1 interacts with CIPK24, CIPK25 and CIPK26 to regulate Na(+)/K(+) homeostasis in Populus euphratica.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hechen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory of Forest Genetics and Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Fuling</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002135">Calcium-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C483419">calcineurin B-like protein 1, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020013" MajorTopicYN="N">Calcium Signaling</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002135" MajorTopicYN="N">Calcium-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23423605</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-013-1394-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17825054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):43-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S401-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 18;138(6):1184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CSH Protoc. 2008 Apr 01;2008:pdb.prot4995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21356813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1346-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1912-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Dec;11(12):2393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Nov;184(3):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Jul;6(7):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16072038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1833-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(2):223-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jul;181(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21600398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 30;125(7):1221-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16814705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 30;125(7):1347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16814720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Mar 1;20(5):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1415-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jan;2(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Oct;219(6):915-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15322881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Sep;29(9):1007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20582419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Oct;92(4):487-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12933363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725382</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<name sortKey="Lv, Fuling" sort="Lv, Fuling" uniqKey="Lv F" first="Fuling" last="Lv">Fuling Lv</name>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Hechen" sort="Zhang, Hechen" uniqKey="Zhang H" first="Hechen" last="Zhang">Hechen Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002465 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002465 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23423605
   |texte=   The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na(+)/K (+) homeostasis in Populus euphratica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23423605" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020